Loverre, A. and R. Cicchetti. Istituto di Genetica, Università di Roma, Italy. A male-specific lethal gene in D. melanogaster.

that in the Cy progeny males and females are present in equal number, but in the Cy⁺ progeny there are no males, independent of the maternal genotype, and the females are present but are fewer than expected. These results suggest

$\frac{\text{Table 1.}}{\text{Cross}} \text{F}_{1} \text{ Progeny} \\ \text{(expected ratio)}$									
Cross		ð	Cy	- <u>φ</u>	20	đ (Су	, _ <u>오</u>	
SD 2 X SD SM5,Cy	(0 1	:	180	:	272	:	276 1)
SD SM5,Cy ♀ X SD SM5,Cy ♂	(0	:	149 1	:	564 2	:	500 2)

Table 2.

A. F₁ progeny of the cross between SD/B1 L females and SD/SM5,Cy males.

Phonotypo	Cy	<i>7</i> +	Cy			
Phenotype	_♂	<u>Q</u>	♂	₽		
+	0	280.	328	371		
Bl L	361	331	335	330		
B1	50	53	66	56		
L	2	50	63	53		

B. Presence of the mll factor in chromosomes from the above cross.

Chromosome examined	<u>m11</u>	<u>m11</u> +
+	55	0
B1 L	0	59
B1	1	44
L	42	0

<u>Table 3.</u> Viability of various developmental stages in experiment and control. Percent values in relation to individuals of the preceding developmental stage are given in parentheses.

Egg	I instar larva	II or III instar larva	Pupa	Adult
413	314 (76%)		220 (76%)	190 (90%)
145	130 (90%)		119 (98%)	112 (94%)

and $E_L_P_L$ of mll are very similar to those of the maleless gene found by Fukunaga et al. in a Japanese population (Genetics 81:135-141, 1975).

In a natural population of D. melanogaster from Corato (Apulia, Italy), a second SD (Segregation Distorter) chromosome was found which in the homozygous condition is present only in females.

The results of the crosses in Table 1 show that in the Cy progeny males and females are

that the absence of homozygous males is due to the action of a lethal recessive factor(s) acting in males alone. In order to localize this factor on the 2nd chromosome, the progeny of SD/B1 L females crossed with SD/SM5, Cy males was studied (see Table 2A). An examination of the class Cy⁺ for the presence or absence of males led to some preliminary conclusions: the lethal factor, which will be termed malelethal (ml1), is located between B1 (54.8) and L (72.0), closer to B1

than to L, and not coinciding with the SD factor which is to the left of B1. Moreover, a series of parental chromosomes and crossovers from the cross in Table 2A recovered in Cy males and females were examined for the presence of m11. These, crossed with m11/SM5,Cy males and females, supplied the data in Table 2B. Pooling the data, we have three recombinant chromosomes between B1 and m11 (2 m11 $^{+}$ L and 1 B1 m11) and 136 between m11 and L (42 m11 L and 50 + 44 B1 m11 $^{+}$), which places m11 at 3/139 of 17.2 m.u. to the right of B1, that is, at 55.2 $^{\pm}$ 0.2 in the centromeric region.

In order to individuate the effective lethal phase of mll the development of progeny from crosses between mll/mll females and mll/SM5,Cy males (experiment) was observed, ORE males and females being used as the control (see Table 3). A significant difference in viability in the progeny of the two crosses was observed in the development from egg to first instar larva and a still more marked difference in the develop-

ment from second and third instar larva to pupa. It is still to be ascertained whether the greater mortality of the eggs in the experiment is related to mll/mll zygotes or is due to a maternal effect. The major effect of mll is to be found, however, in second or third instar larva.

The phenotype, mapping